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Abstract

Lyme disease is the most prevalent vector-borne disease in the United States. Ixodes scapularis, 

commonly referred to as the blacklegged tick, is the primary vector of Lyme disease spirochetes, 

Borrelia burgdorferi sensu lato (s.l.), in the eastern United States. Connecticut has pervasive 

populations of I. scapularis and remains a hotspot for Lyme disease. A primary aim of this study 

was to determine if passively collected data on human-biting I. scapularis ticks in Connecticut 

could serve as a useful proxy for Lyme disease incidence based on the cases reported by the 

Connecticut Department of Public Health (CDPH). Data for human-biting I. scapularis ticks 

submitted to the Tick Testing Laboratory at the Connecticut Agricultural Experiment Station 

(CAES-TTL), and tested for infection with B. burgdorferi s.l., were used to estimate the rate 

of submitted nymphs, nymphal infection prevalence, and the rate of submitted infected nymphs. 

We assessed spatiotemporal patterns in tick-based measures and Lyme disease incidence with 

generalized linear and spatial models. In conjunction with land cover and household income data, 

we used generalized linear mixed effects models to examine the association between tick-based 

risk estimates and Lyme disease incidence. Between 2007 and 2017, the CAES-TTL received 

26,116 I. scapularis tick submissions and the CDPH reported 23,423 Lyme disease cases. The 

rate of submitted nymphs, nymphal infection prevalence, the rate of submitted infected nymphs, 

and Lyme disease incidence all decreased over time during this eleven-year period. The rate 

of submitted nymphs, the rate of submitted infected nymphs, and Lyme disease incidence were 
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spatially correlated, but nymphal infection prevalence was not. Using a mixed modeling approach 

to predict Lyme disease incidence and account for spatiotemporal structuring of the data, we found 

the best fitting tested model included a strong, positive association with the rate of submitted 

infected nymphs and a negative association with the percent of developed land for each county. 

We show that within counties, submissions of B. burgdorferi s.l. infected nymphs were strongly 

and positively associated with inter-annual variation in reported Lyme disease cases. Tick-based 

passive surveillance programs may be useful in providing independent measures of entomological 

risk, particularly in settings where Lyme disease case reporting practices change substantially over 

time.
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1. Introduction

First described in 1977 following the investigation of a cluster of children with arthritis-

like symptoms in Lyme, Connecticut (Steere et al., 1977), Lyme disease is now the most 

prevalent vector-borne disease in the United States, with an estimated 330,000 human cases 

occurring annually (Hinckley et al., 2014; Nelson et al., 2015; Schwartz et al., 2017). Ixodes 
scapularis, commonly referred to as the blacklegged tick or deer tick, is the primary vector 

of Lyme disease spirochetes, Borrelia burgdorferi sensu lato (s.l.), and several other human 

disease-causing pathogens in the Eastern United States (Burgdorfer et al., 1982; Eisen and 

Eisen, 2018). Connecticut has pervasive populations of I. scapularis (Dennis et al., 1998; 

Eisen et al., 2016), and remains a high-incidence state for Lyme disease (Schwartz et al., 

2017). In 2015, Connecticut was among the 14 states from which 95% of Lyme disease 

cases in the United States were reported, had the 5th highest number of reported cases 

(n = 1873), and concurrently has the 5th highest incidence (52.2 per 100,000 population) 

(Centers for Disease Control and Prevention, 2017).

Surveillance for Lyme disease cases can be complemented by conducting active or passive 

tick surveys to better understand spatial and temporal risk of human exposure to tick 

bites. Active tick surveillance is the collection of ticks in the environment, for example 

through drag or flag sampling or examination of captured rodents. Entomological risk 

measures generated through active tick surveillance include the density of host-seeking 

infected nymphal ticks (DIN), calculated as the product of the density of nymphs (DON) 

and nymphal infection prevalence (NIP) which is the proportion of nymphs that test positive 

for B. burgdorferi s.l. (or another pathogen of interest). DIN is generally considered the best 

predictor of human Lyme disease risk (Mather et al., 1996; Diuk-Wasser et al., 2012; Pepin 

et al., 2012).

Active tick surveillance is labor intensive, which limits the geographic coverage of sampling 

locations. Moreover, tick abundance and density estimated through active tick surveillance 

(i.e., tick dragging) is highly variable and unreliable if not based on repeated measures 

(Clow et al., 2018). Additionally, human behavior (such as how humans use the landscape, 
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to what extent they take protective measures, and for how long ticks remain attached 

before detection and removal) mediates the relationship between DIN and Lyme disease 

acquisition (Rossi et al., 2015; Eisen and Eisen, 2016). Several studies have found a 

positive relationship between DIN and Lyme disease cases (Mather et al., 1996; Nicholson 

and Mather, 1996; Stafford et al., 1998; Pepin et al., 2012). However, in some cases the 

relationship was weak or equivocal (Nicholson and Mather, 1996; Pepin et al., 2012; 

Ripoche et al., 2018), and in other studies no association was reported (Connally et al., 

2006; Prusinski et al., 2014). These discrepant findings likely reflect differences across 

studies in human behavior or the scale of the analysis, with the strength of the relationship 

between DIN and Lyme disease weakening with increased spatial resolution (Connally et al., 

2006; Pepin et al., 2012).

Compared with active surveillance, there has been less focus on understanding how 

well tick measures obtained through passive surveillance estimate reported Lyme disease 

cases. Passive surveillance can include assessing tick abundance or infection rates in ticks 

submitted from the public, physicians or veterinarians. Testing for pathogens in ticks 

engorged or partially engorged with human blood is offered at no cost to residents of 

Connecticut by the Tick Testing Laboratory at the Connecticut Agricultural Experiment 

Station (CAES-TTL). This testing service promotes voluntary tick submissions from 

Connecticut residents. Secondarily, it provides passive surveillance data to estimate the 

frequency of human exposure to ticks, as well as tick infection prevalence, on a 

broader scale than more focal active tick surveillance (Xu et al., 2016). Compared to 

active surveillance of ticks in the environment, passive surveillance is economical, more 

epidemiologically relevant, covers a larger geographical area and may better detect tick 

populations at low densities. Drawbacks of passive surveillance include (1) limitations of 

a presence-only dataset, (2) potential for waning interest over time (participation fatigue) 

or variable knowledge across communities of the surveillance program, (3) spatial bias to 

more versus less populated areas, and (4) difficulty in detecting immature tick life stages on 

humans and pets (Koffi et al., 2012; Nelder et al., 2014; Soucy et al., 2018). Nevertheless, 

passive tick surveillance has been used to better understand the epidemiology of tick-borne 

diseases and assess the risk of human infection (Stromdahl et al., 2001; Ogden et al., 2006, 

2010; Koffi et al., 2012; Nelder et al., 2014; Rossi et al., 2015; Gasmi et al., 2016; Xu et 

al., 2016; Ripoche et al., 2018). Previous studies have found associations between passive 

tick surveillance metrics and Lyme disease cases, and provided insights into spatiotemporal 

trends of actual human exposure to bites by infected ticks (Johnson et al., 2004; Rand et al., 

2007; Waller et al., 2007; Rossi et al., 2015; Shelton, 2015; Ripoche et al., 2018; Gasmi et 

al., 2019; Jordan and Egizi, 2019).

Here we use passive surveillance data, based on I. scapularis tick submissions to the CAES-

TTL and tick testing results for B. burgdorferi s.l., and reported Lyme disease cases to 

describe spatiotemporal patterns of disease risk at two spatial scales (town and county) 

in Connecticut between 2007 and 2017. Over this eleven-year period, we aim to describe 

tick-based risk measures and Lyme disease incidence and examine the relationship between 

passive tick surveillance-derived tick-based risk metrics and Lyme disease incidence.
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2. Materials and methods

2.1. Study area

Connecticut is the southernmost state in New England, a small state of about 14,356 km2 

and a population of 3.6 million people (United States Census Bureau, 2017). The state 

has eight counties and 169 towns. Overall, approximately 58% of the state is forested and 

even in the most urban counties forest cover is roughly 50% (Wharton et al., 2004; The 

Community Health Foundation, 2007; Butler, 2017).

2.2. Lyme disease data

Lyme disease case data for each town and year were provided by the Connecticut 

Department of Public Health (CDPH) Epidemiology and Emerging Infections Program. 

Notably, Lyme disease surveillance methods in Connecticut have changed over time. 

Mandatory laboratory reporting was instated in 1998 to monitor the efficacy of the Lyme 

disease vaccine, but this requirement ended when the vaccine was withdrawn in 2002 and 

was not reinstated until 2007 (Ertel et al., 2012).

Between 1996 and 2007, 16% more Lyme disease cases were reported by physicians 

in years when laboratory reporting was mandated (Ertel et al., 2012). Therefore it is 

pragmatic to restrict the epidemiological data to 2007 2017 when both laboratory and 

physician surveillance were conducted. Physician reported cases tend to include early 

onset manifestations (e.g., erythema migrans), whereas laboratory reported cases tend to 

comprise later manifestations such as those involving the musculoskeletal, neurological, 

or cardiovascular systems (Ertel et al., 2012). We therefore use the combined surveillance 

metric, which we call total cases (confirmed and probable physician and laboratory-based 

surveillance cases) for analysis as it provides a more comprehensive estimate of Lyme 

disease cases (Ertel et al., 2012). We used the US Census estimates from 2000 to calculate 

incidence per 100,000 population for each year from 2007 to 2009 and the 2010 US Census 

estimates to calculate incidence per 100,00 population for each year from 2000 to 2017 

(United States Census Bureau, 2017).

2.3. Tick-based data

The CAES-TTL started testing ticks for evidence of infection with B. burgdorferi s.l. in 

1996. Ticks are submitted by residents, health departments, and physicians offices. All 

submitted ticks are examined under a dissecting microscope and identified with standard 

morphological keys and taxonomic references (Keirans and Litwak, 1989; Durden and 

Keirans, 1996). Engorged or partially engorged female and nymphal I. scapularis ticks 

(showing evidence of at least some ingested blood) are screened for infection with B. 
burgdorferi s.l. as described below.

Two methodologies have been used for screening of I. scapularis ticks for evidence of 

infection with B. burgdorferi s.l. from 1996 to 2017. From 1996 to 2014, polymerase 

chain reaction (PCR) amplification combined with Southern blot hybridization was used. 

Briefly, ticks were homogenized, genomic DNA extracted, and a portion of the OspA gene 

was amplified (Persing et al., 1990). PCR-amplified products were then analyzed by gel 
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electrophoresis, followed by Southern blot hybridization (Persing et al., 1990). In 2014, 

Southern blot hybridization was removed from the methodology due to the potential health 

and safety hazards associated with using 32 P-labled probes. Since 2014, screening of 

engorged or partially engorged ticks was conducted by extracting genomic DNA using the 

DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA, USA), or DNA-zol BD (Molecular 

Research Center, Cincinnati, OH, USA) according to the manufacturers recommendations 

with some modifications (Molaei et al., 2006), followed by PCR amplification of the 

Vagellin (Barbour et al., 1996), 16S rRNA (Gazumyan et al., 1994), and OspA (Persing 

et al., 1990) genes. A more detailed description of these methods is provided elsewhere 

(Williams et al., 2018). Comparison between the two methods, PCR-Southern blot 

hybridization and PCR using three diagnostic genes on a subset of DNA extracts from 

ticks with known and unknown infection status with B. burgdorferi s.l. produced comparable 

results (data not shown). Although this assay is not specific to B. burgdorferi sensu stricto 

(s.s.), a human-pathogenic member of the bacterial genospecies complex B. burgdorferi s.l., 

it is agreed upon that B. burgdorferi s.s. accounts for the vast majority of Lyme disease 

infections in Connecticut and throughout North America (Waddell et al., 2016). Moreover, 

a recent study capable of distinguishing B. burgdorferi s.s. from other B. burgdorferi s.l. 

spirochetes found all infected I. scapularis nymphs from Connecticut, and nearly all from 

neighboring New York, to represent B. burgdorferi s.s. (Feldman et al., 2015).

On the submission form to the CAES-TTL, the person submitting the tick must enter their, 

or their patient’s town of residence and provide information on the likely town the tick was 

acquired if it is known to be different from the town of residence. Ticks acquired outside of 

Connecticut or from a Connecticut county other than the county of the submitter’s residence 

were excluded from the analysis. These actions served to minimize error introduced by 

travel-related tick exposures, which can be problematic in a passive surveillance program 

based on human tick bites (Xu et al., 2018). We further narrowed the dataset to submissions 

of female and nymphal ticks, excluding males and larvae. Because nymphs are considered 

the primary vectors of Lyme disease spirochetes to humans in the Northeast (Falco et al., 

1999), we estimated the rate of submitted nymphs per 100,000 population, NIP, and the 

rate of submitted infected nymphs per 100,000 population at two spatial scales (town and 

county) for each year from 2007 to 2017. To calculate the rate of submitted nymphs per 

100,000 population, we used the 2000 and 2010 United States Census estimates (United 

States Census Bureau, 2017). NIP was calculated as the number of positive nymphs divided 

by the total number of tested nymphs. The rate of submitted infected nymphs recovered from 

humans was calculated as the rate of submitted nymphs multiplied by the NIP.

2.4. Covariates

To assess the influence of selected underlying conditions on the variability in the (infected) 

rate of submitted nymphs and Lyme disease incidence in Connecticut, we measured median 

household income and extent of developed land cover. We speculated that these variables 

influence tick submission to the CAES-TTL and/or Lyme disease incidence. Median 

household income may underlie access to or knowledge of services for tick testing or 

Lyme disease diagnosis and the degree of developed land cover may explain some of 

the variability in human-tick encounters (Cortinas and Spomer, 2014). To estimate town 
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and county level median household income, we used United States Census (2012 2016) 

American Community Survey 5-year estimates of median household income (United States 

Census Bureau, 2017). To determine the extent of developed land cover for each town and 

county, we used the 2011 National Land Cover Database (NLCD) (Homer et al., 2015). 

We used the land cover classes considered developed (developed open space, developed 

low intensity, developed medium intensity, and developed high intensity) to create a binary 

raster grid at 30 meter spatial resolution of developed and undeveloped land. Using this 

binary raster grid we then determined the percentage of developed land for each town and 

county using the zonal statistics as table tool from the spatial analysis toolbox in ArcGIS 

10.1 (ESRI, 2011). We investigated the relationship of these two covariates to tick-based risk 

measures and Lyme disease incidence through correlation analyses.

2.5. Data analysis

Passive surveillance data from the CAES-TTL is available since 1996 and we used the full 

record (1996 2017) to describe submission patterns including seasonality of submissions. To 

compare tick-based risk measures to Lyme disease incidence, we restricted the analyses to 

the years 2007 2017. To ensure that this restricted dataset was reflective of the entire dataset, 

we performed a Spearman’s rank correlation test.

To assess temporal patterns in tick-based risk metrics and Lyme disease incidence, we 

summarized the data across the state for annual estimates. To test for temporal differences 

in the rate of submitted nymphs, NIP, the rate of submitted infected nymphs, and Lyme 

disease incidence, we used generalized linear models (family = Poisson; link = log) with 

year structured as an ordinal integer. To test for spatial patterns, we summarized the data 

across all years for each town (n = 169) and calculated the Global Moran’s I in ArcGIS 10.1. 

For robust estimation of Global Moran’s I at least thirty observations are needed; therefore, 

we were unable to calculate spatial clustering at the county (n = 8) level.

To assess the relationship between Lyme disease incidence and tick-based metrics, we used 

generalized linear mixed effects models (GLMER; family = Poisson; link = log) with year 

and county as grouping variables to explicitly account for spatiotemporal structure in the 

data. We compared GLMER model fits by Akaike Information Criterion (AIC). Lower 

scores indicate better model fits; a two-point difference is significant. To determine how 

accurately the GLMER models predicted Lyme disease incidence, we calculated Spearman’s 

rank correlation coefficient between predicted and observed Lyme disease cases. Further, we 

used leave-one-out (LOO) cross validations across years and counties. Each year (or county) 

of data was iteratively omitted from the analysis and the compiled sets of predictions from 

the LOO models were then compared with predictions based on the full record using root 

mean square error (RMSE). RMSE gives the standard deviation of the model prediction 

error; smaller values indicate better model performance. For data processing and analyses 

we used R (R Core Team, 2017) and for mixed effects modeling we employed the lme4 

package (Bates et al., 2014).
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3. Results and discussion

3.1. Lyme disease data, 2007 2017

A total of 31,471 Lyme disease cases (including confirmed and probable) has been reported 

from Connecticut during 2007 to 2017. Of these, 8048 were excluded due to unknown 

town of residence. Of the remaining 23,423 cases, 13,331 (57%) were initiated through 

laboratory-based surveillance and 10,092 (43%) through physician-based reporting.

3.2. Tick-based data, 1996 2017

A total of 91,671 I. scapularis ticks was submitted to the CAES-TTL between 1996 and 

2017, most of which (91,409; 99.7%) by Connecticut residents. The majority of these ticks 

were females (48,747) or nymphs (39,236) but there were also submissions of males (1027) 

and larvae (2399).

Although we did not assess the precise location the tick was acquired, human tick 

encounters were traced to the town of residence or the likely town the tick was acquired, 

if known (see Methods). We found a high degree of agreement between the locations 

of a submitter’s residence and where the tick was thought to be acquired 73,312 (80%) 

ticks were acquired and submitted from the same town and 81,171 (89%) were acquired 

and submitted from the same county. The finding that the vast majority of ticks were 

acquired and submitted in the same town supports the importance of peridomestic risk for 

tick-borne disease transmission (Connally et al., 2006; Eisen et al., 2016; Jordan and Egizi, 

2019). Nymphal submissions were markedly higher between 1996 and 2006 compared with 

between 2007 and 2017 (Table 1); however we have no explanation for this change.

Of those ticks that were submitted and acquired from the same county between 1996 and 

2017, 43,622 were adult females and 34,500 were nymphs (Table 1). A total of 65,056 

partially or fully engorged ticks (34,433 females and 30,632 nymphs) recovered while biting 

humans were tested for the presence of B. burgdorferi s.l. The overall prevalence of B. 
burgdorferi s.l. infection in I. scapularis ticks was 21% for nymphs and 33% for adult 

females (see Table 1 for annual values). These results are similar to passive surveillance-

derived I. scapularis infection prevalence (all stages combined) in Massachusetts (30% 

between 2006 and 2012) (Xu et al., 2016) and in New Jersey (38% of adult females and 22% 

of nymphs between 2006 and 2016) (Jordan and Egizi, 2019)

Submissions of nymphal and adult female I. scapularis ticks followed a distinct seasonal 

pattern (Fig. 1). Nymphal tick submissions peaked in June, while submissions of adult 

female ticks showed a bimodal pattern with a major peak in April-May and a minor peak 

in November. The June peak of nymphal submissions coincides with the June July peak in 

reported Lyme disease cases in Connecticut (Ertel et al., 2012). This finding further supports 

the understanding that nymphal bites are responsible for the majority of Lyme disease cases 

in the Northeast (Mather et al., 1996; Falco et al., 1999). Nymphal tick submissions in June 

alone represented 25% of the total I. scapularis submissions, underscoring the temporally 

focused nature of Lyme disease risk in Connecticut and throughout the Northeastern United 

States.
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3.3. Tick-based data, 2007 2017

When comparing the tick-based risk measures to Lyme disease incidence, we restricted the 

analyses to the years 2007 2017. Over this eleven-year period there were 26,116 submissions 

of female and nymphal I. scapularis ticks that were submitted and acquired from the 

same county in Connecticut. Partially or fully engorged ticks tested for presence of B. 
burgdorferi s.l. (n = 16,807; 64% of all submitted ticks) included 10,752 females and 6055 

nymphs. Tick-based risk measures calculated for this temporally restricted dataset were well 

correlated, assessed with Spearman’s rank correlation coefficient, with those calculated for 

the 1996 2017 period at both the town and county levels (town rate of submitted nymphs: = 

0.79, p < 0.001; town NIP: = 0.59, p < 0.001; county rate of Submitted nymphs:= 0.98, p < 

0.001; and county NIP: = 0.90, p = 0.002).

The rate of submitted nymphs, calculated as nymphal tick submissions per 100,000 

population, ranged from 10.24 in 2012 to 32.12 in 2009 across the eleven-year period (mean 

= 22.12, SD = 6.99). Generally we note a slight decline in the annual rate of submitted 

nymphs, albeit with fluctuations (Fig. 2). We note that the rate of submitted nymphs per 

100,000 population was much higher in Fairfield County compared to all other counties 

(Fig. 2). The rate of submitted infected nymphs, follows a similar trajectory decreasing over 

time and showing substantial spatial variability across counties (Fig. 2). NIP also generally 

decreased over time but remained markedly steady across counties (Fig. 2).

We assessed the association between NIP and the rate of submitted nymphs to determine if 

the downward trend in NIP over time is a result of decreasing submission rates. However, 

by testing for associations using Pearson’s product moment correlations, we did not Und an 

association at either the town (r = 0.003; p = 0.930) or the county (r = 0.028, p = 0.799) 

spatial scale.

3.4. Association of Lyme disease incidence and tick-based measures with household 
income and land cover

We found positive correlations between median household income and the rate of submitted 

nymphs (r = 0.50, p < 0.001) and the rate of submitted infected nymphs (r = 0.48, p < 0.001) 

at the town spatial scale but not at the county level. We did not find a relationship between 

NIP and median household income at either spatial scale, nor did we find a relationship 

between any tick-based risk measure and the degree of developed land at either spatial scale. 

We did not find a significant association between median household income and reported 

number of Lyme disease cases at either spatial scale. However, we did find a strong negative 

correlation between Lyme disease incidence and the degree of developed land at both the 

scale of town (r = 0.61, p < 0.001) and county (r = 0.91, p = 0.002).

The positive associations between the rate of submitted nymphs and the rate of submitted 

infected nymphs with median household income imply that participation in the tick 

submission program increases with income. Perhaps wealthier communities have more 

knowledge of or access to the CAES-TTL. In contrast, the lack of an association between 

reported Lyme disease incidence and median household income suggests that Lyme disease 

case reporting is independent of the community’s wealth. Lot size has been shown to be 
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associated with tick infestation and Lyme disease risk, with larger lots more likely to have 

a wooded area, higher numbers of ticks, and Lyme disease cases (Maupin et al., 1991; 

Cromley et al., 1998). The association between the rate of submitted infected nymphs and 

median household income may indicate that households with higher income tend to have 

larger lots with greater likelihood of including wooded areas. The degree of developed land 

use was associated with Lyme disease incidence but none of the tick-based metrics. The 

increase in reported Lyme disease incidence in less developed areas may therefore be due to 

human behavioral differences in urban versus rural areas. While we can only speculate on 

the differential mechanisms underlying these relationships, we are assured that, at least as 

they were measured, neither covariate confounds the relationship between these tick-based 

risk metrics and Lyme disease incidence.

3.5. Spatiotemporal patterns, 2007 2017

Overall, annual nymphal submissions were correlated (Spearman’s rank correlation) with 

annual reported Lyme disease incidence both at the town ( = 0.26, p < 0.001, n = 1859 

observations) and the county ( = 0.66, p < 0.001, n = 88 observations) scales.

To explicitly assess temporal changes in the rate of submitted nymphs, NIP, the rate of 

submitted infected nymphs, and Lyme disease incidence, we used generalized linear models 

with year as an ordinal integer (Table 2). The models suggest that the rate of submitted 

nymphs, NIP, the rate of submitted infected nymphs, and Lyme disease incidence decreased 

over time between 2007 and 2017 (Table 2; s < 1).

While Lyme disease cases have increased overall in the United States (Centers for Disease 

Control and Prevention, 2015), other researchers have noted a downward trend in Lyme 

disease incidence in states previously classified as high incidence (Schwartz et al., 2017). 

Such downward trends may be due to reporting fatigue, human behavioral changes (e.g., 

improved prevention and control), decreasing tick densities, among other factors.

The observation that NIP decreased over time between 2007 and 2017 differs from reports 

where infection prevalence in field-collected nymphs (Diuk-Wasser et al., 2012; Feldman 

et al., 2015) and passively collected I. scapularis ticks (Xu et al., 2016; Jordan and Egizi, 

2019) remain relatively stable over time. In contrast to endemic areas, in areas of emergence 

infection prevalence has been shown to increase over time (Nelder et al., 2014; Gasmi 

et al., 2016). The fluctuations in rates of submitted (infected) nymphs are in agreement 

with changes in tick densities and the density of infected ticks over time, which in turn 

may be due to changes in host populations and climatic conditions (Stafford et al., 1998; 

Wilson, 1998; Killilea et al., 2008). However, in a hyperendemic Lyme disease state such as 

Connecticut we cannot rule out the possibility that tick submissions to the CAES-TTL have 

declined due to waning public interest.

We note differences in Lyme disease incidence across counties in Connecticut. Lyme disease 

incidence was highest in Windham, Tolland, and New London counties and lowest in New 

Haven, Fairfield, and Hartford counties (Fig. 2). At the town scale, we found evidence of 

spatial clustering for Lyme disease incidence (Moran’s I: 0.547, z = 10.307, p < 0.001); 

specifically, we note high incidence towns at the intersection of Tolland, Windham and New 
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London Counties and low incidence towns in southwestern Hartford and northeastern New 

Haven Counties (Fig. 3).

At the town scale, we found evidence of spatial clustering for the rate of submitted nymphs 

(Fig. 4; Moran’s I: 0.447, z = 8.776, p < 0.001), and the rate of submitted infected nymphs 

(Fig. 5; Moran’s I: 0.412, z = 7.997, p < 0.001). Indeed, the majority (81%) of submitted 

nymphs were from Fairfield and New Haven Counties (Fig. 2). There was little difference 

in NIP across towns (21.1%, 95%CI: 20.0%, 22.1%) or counties (21.0%, 95%CI: 19.4%, 

22.5%) in Connecticut between 2007 and 2017 (Fig. 2) and NIP did not display spatial 

clustering (Fig. 6; Moran’s I: 0.07, z = 1.52, p = 0.13). NIP may be near uniform, at least 

at the spatial scale of counties or towns, in states or regions where I. scapularis is long 

established and ubiquitous (New York City Department of Health and Mental Hygiene, 

2018). Of course, there is aggregation of estimates at the county and town levels. At smaller 

spatial scales, such as for individual households, there is likely a great deal of variability 

in tick-based risk measures (Ostfeld et al., 1996; Pardanani and Mather, 2004; Killilea 

et al., 2008). Interestingly the finding that NIP is relatively steady across Connecticut is 

different from previous study in Connecticut showing that before 1991 ticks infected with 

B. burgdorferi were concentrated to the coastline (Magnarelli et al., 1993), indicating a shift 

from emergent to endemic populations of I. scapularis. If it is true that NIP is fairly stable 

across the state within any year but changes over time, then repeated annual sampling in a 

few locations in an active tick surveillance program might provide sufficient information to 

quantify risk especially when resources are limited.

After accounting for population, we note higher Lyme disease incidence in more rural 

counties of Connecticut (as has been noted previously (Cromley et al., 1998)), such as 

Windham and Tolland, yet lower rates of submitted (infected) nymphs estimates that 

similarly account for population and similar NIP across counties (Fig. 2). Collectively, these 

findings suggest that human behavior is playing a large part in encounters with infected ticks 

and Lyme disease transmission risk (Nicholson and Mather, 1996). There may also be a need 

to better promote the CAES-TTL program in more rural parts of the state.

Future research should assess whether the rates of submitted nymphs are associated with 

the density of host-seeking nymphs. Furthermore, a comparison of infection prevalence in 

nymphal ticks collected from humans versus from the environment would be needed to 

determine if the trend for infection prevalence in nymphs removed from humans (in this 

case a decreasing trend) directly reflect that of nymphs in the environment, or if changes 

in human use of the landscape over time could have led to increased exposure to nymphs 

residing in microhabitats with lower tick density and less intense enzootic transmission of 

B. burgdorferi s.l., or if decreasing submission and case reports are simply explained by 

fatigue or reduced participation. Future studies should also explore whether passive (ticks 

on people) or active (drag sampling) surveillance provides better estimates of human disease 

risk. This comparison should also include a cost analysis to determine if any predictive 

improvement in active surveillance outweighs the added costs of these programs (Nelder et 

al., 2014). Finally, the findings that NIP decreases temporally between 2007 and 2017 but is 

geographically uniform, warrants further investigation.
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3.6. Spatiotemporal modeling, 2007 2017

We found general declines in tick-based risk measures as well as Lyme disease incidence 

during the period 2007 2017. We also found divergent spatial patterns in the rates of 

submitted (infected) nymphs with those for Lyme disease incidence. We used a generalized 

linear mixed effects model to explicitly account for these spatiotemporal differences in 

tick-based risk measures and Lyme disease incidence to determine (1) if within each county 

(or town), there is a relationship between these tick-based risk measures and Lyme disease 

incidence and (2) if we can use these tick-based risk measures to predict Lyme disease for 

each county (or town).

At both the county and town spatial scales, we found that over the eleven years investigated 

an increase in the rate of submitted (infected) nymphs was predictive of increased Lyme 

disease incidence for each county (or town). Table 3 shows the coefficient estimates for each 

tick-based risk metric, the associated AIC score, and Spearman’s rank correlation coefficient 

for the model-predicted and observed Lyme disease incidence. Overall, we Und better model 

performance at the county compared to the town spatial scale. We note that the models 

with NIP are not significant, but that inclusion of NIP with the rate of submitted nymphs 

in the tick-based risk metric rate of submitted infected nymphs is an improvement over the 

predictive value of just the rate of submitted nymphs. Moreover the inclusion of the percent 

of developed land further explains variability in Lyme disease incidence and improves model 

fit. We conducted chi-squared tests to assess whether the inclusion of predictors led to 

statistically significant improvements in model fit as measured by a reduction in the residual 

sum of squares. Compared to a null model, the rate of submitted infected nymphs improved 

model performance ( 2 = 12.874, p < 0.001). Inclusion of the percent of developed land in 

the county model further improved model fit without influencing the effect estimate for the 

rate of submitted infected nymphs ( 2 = 15.599, p < 0.001). Of the models tested, the rate 

of submitted infected nymphs along with the percent of developed land as a covariate at the 

county scale provided the best model fit for predicting Lyme disease incidence as measured 

by AIC (AIC = 1267, Table 3).

Fitted model values (predicted values) were strongly and positively correlated with observed 

values of Lyme disease incidence at the county scale (Table 3, s range from 0.945 to 0.946, p 
< 0.001; Fig. 7, Full Model). This indicates a signal between the rate of submitted (infected) 

nymphs with Lyme disease incidence regardless of potential spatiotemporal biases in passive 

tick or Lyme disease surveillance.

3.7. Spatiotemporal model validation, 2007 2017

By conducting leave-one-out temporal and spatial cross validations (LOOTCV and 

LOOSCV, respectively), we found the full model (RMSE = 40.91) performed better than 

either the LOOTCV model (RMSE = 73.27) or the LOOSCV model (RMSE = 136.70) (Fig. 

7). The lower RMSE for the LOOTCV suggests that out of sample predictions (i.e. model 

predictions of a set of observations different than those that the model was fitted on) is better 

year-to-year than county-to-county. Models trained on data from certain counties (such as 

counties with more observations) may provide better predictions than models trained on data 

from others.

Little et al. Page 11

Ticks Tick Borne Dis. Author manuscript; available in PMC 2022 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.8. Conclusion

While Lyme disease has been endemic in Connecticut for over three decades, disease 

occurrence is still spreading geographically in other parts of the Eastern United States (Eisen 

and Eisen, 2018). We can learn from this Connecticut based research and employ the results 

in emergent areas facing a growing threat of Lyme disease (Stone et al., 2017). Results from 

this longitudinal analysis in an endemic setting suggest that the rate of submitted infected 

nymphs are highly predictive of Lyme disease incidence for each town or county. These 

metrics could be calculated from other passive surveillance datasets in emergent areas, but 

their accuracy in predicting Lyme disease occurrence would need to be evaluated. There 

are some very important caveats to passive tick surveillance programs, which were well 

accounted for in this study but can be difficult to achieve: tick identification being done by 

trained individuals and exclusion of ticks acquired while traveling out of county or state.

The use of passive surveillance to build predictive models for public health decision-making 

is limited, as it has been asserted that passive surveillance data are biased (Beck et al., 2014). 

However, tick submissions through passive surveillance were shown to predict Lyme disease 

cases at a town level in an emergent region in Canada (Ripoche et al., 2018). Moreover, 

a predictive model for Lyme disease based on passive surveillance data was successfully 

validated using active surveillance data in Canada (Soucy et al., 2018).

In this study we analyzed an eleven-year record of passive surveillance data with 23,432 

reported Lyme disease cases and 26,116 tick submissions and found a strong relationship 

between the rate of submitted infected nymphs with Lyme disease incidence for each county 

over time. Our findings underscore the relevance of using passive surveillance based on ticks 

recovered from humans to guide informed decisions concerning prevention and treatment of 

tick-borne diseases.

Total numbers of I. scapularis submitted and/or tested for B. burgdorferi s.l. by life stage 

(nymph and adult female) for each year 1996 2017.

Temporal trends of tick-based risk metrics (rate of submitted nymphs, nymphal infection 

prevalence, and rate of submitted infected nymphs) and Lyme disease incidence across 

Connecticut. Here we report the coefficient estimate ( ) for year. Values under 1 support a 

decrease in each tick-based risk metric and Lyme disease incidence over time.

Generalized linear mixed effect models (family = Poisson, link = log) with year and 

county as crossed random effects. For each set of model parameters tested we compare: 

the coefficient ( ) estimate for the tick-based risk metric is given along with the 95% 

confidence interval; AIC is the Akaike Information Criterion for the model, lower is better; 

and Spearman’s rank correlation coefficient ( ) for the model-predicted and observed Lyme 

disease incidence are given. The models were conducted at two spatial scales, town and 

county. There were 1859 observations at the town spatial scale (169 towns and 11 years); 

and 88 observations at the county spatial scale (8 counties and 11 years).
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Fig. 1. 
Submission phenology. Submission phenology of adult female and nymph Ixodes scapularis 
ticks to the CAES-TTL by month (1996 2017).
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Fig. 2. 
Descriptive spatial and temporal Lyme disease and tick-based risk measures. Cumulative 

Lyme disease incidence per 100,000 population, cumulative rate of submitted nymphs per 

100,000 population, cumulative nymphal infection prevalence (%), and the cumulative rate 

of submitted infected nymphs by year and county for the years 2007 2017.
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Fig. 3. 
Lyme disease incidence. Cumulative (2007 2017) total Lyme disease incidence (per 

100,000) broken into quartiles and mapped by town.
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Fig. 4. 
Rate of submitted nymphs. Cumulative (2007 2017) rate of submitted nymphs per 100,000 

populations broken into quartiles and mapped by town.
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Fig. 5. 
Rate of submitted infected nymphs. Cumulative (2007 2017) rate of submitted infected 

nymphs per 100,000 population broken into quartiles and mapped by town.
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Fig. 6. 
Nymphal infection prevalence. Cumulative (2007 2017) nymphal infection prevalence 

broken into quartiles and mapped by town.
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Fig. 7. 
Model fits. Relationship of observed Lyme disease cases (red dots) and model predictions 

of Lyme disease cases (blue line). Predictions based on best fitting model by AIC the model 

including the rate of submitted infected nymphs and the degree of developed land use at the 

county spatial scale. (For interpretation of the references to color in the text, the reader is 

referred to the web version of this article.)
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Table 1

Annual Ixodes scapularis tick submissions to the CAES-TTL, 1996 2017.

No. submitted No. tested (% positive)

Year Nymph Adult Nymph Adult

1996 2563 1789 2403 (15%) 1565 (29%)

1997 1195 1133 1113 (12%) 1041 (27%)

1998 1877 1938 1764 (19%) 1824 (33%)

1999 3235 2870 3138 (16%) 2737 (32%)

2000 3178 2545 3085 (17%) 2402 (32%)

2001 2464 2550 2388 (17%) 2448 (36%)

2002 3401 2481 3386 (21%) 2447 (39%)

2003 1684 3768 1673 (23%) 3694 (35%)

2004 1599 2478 1596 (35%) 2438 (42%)

2005 3193 1983 3174 (23%) 1936 (36%)

2006 1557 2525 857 (16%) 1149 (27%)

2007 806 1358 540 (36%) 684 (33%)

2008 996 1606 566 (20%) 731 (26%)

2009 1094 1979 659 (41%) 905 (34%)

2010 663 1221 461 (34%) 597 (29%)

2011 622 1716 424 (16%) 824 (27%)

2012 366 1210 270 (15%) 556 (20%)

2013 1142 959 824 (29%) 520 (33%)

2014 520 1492 339 (28%) 789 (27%)

2015 847 1646 718 (27%) 1297 (33%)

2016 740 1543 561 (19%) 1239 (33%)

2017 758 2832 693 (16%) 2610 (36%)

Total 34500 43622 30632 (21%) 34433 (33%)
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Table 2

Temporal trends.

Year (95% CI)

Rate of submitted nymphs 0.974 (0.968, 0.981)

Nymphal infection prevalence 0.950 (0.936, 0.964)

rate of submitted infected nymphs 0.924 (0.855, 0.999)

Lyme disease incidence 0.972 (0.968, 0.976)
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Table 3

Model results comparing tick-based risk metric predictive value.

Model parameters (95% CI) AIC

Town spatial scale (n = 1859)

Rate of submitted nymphs 1.200 (1.180, 1.221) 10,711 0.598

Nymphal infection prevalence 0.988 (0.969, 1.007) 10,263 0.598

Rate of submitted infected nymphs 1.187 (1.166, 1.208) 9970 0.595

Rate of submitted nymphs + degree developed 1.017 (0.999, 1.036) 7271 0.724

Nymphal infection prevalence + degree developed 0.985 (0.966, 1.004) 6762 0.720

Rate of submitted infected nymphs + degree developed 1.021 (1.002, 1.041) 6760 0.720

County spatial scale (n = 88)

Rate of submitted nymphs 1.050 (1.015, 1.087) 1304 0.946

Nymphal infection prevalence 0.998 (0.976, 1.020) 1294 0.944

Rate of submitted infected nymphs 1.050 (1.022, 1.078) 1281 0.945

Rate of submitted nymphs + degree developed 1.051 (1.016, 1.088) 1290 0.946

Nymphal infection prevalence + degree developed 0.998 (0.976, 1.020) 1281 0.944

Rate of submitted infected nymphs + degree developed 1.051 (1.023, 1.079) 1267 0.945
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